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Inherent multistability in arrays of autoinducer coupled genetic oscillators
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Rhythm generation mechanisms are very important for genetic network functions as well as for the design
of synthetic genetic circuits. A significant attention to date has been focused on the synchronization of com-
municating genetic units, which results in the production of an unified rhythm. In contrast to this we address
the question: what mechanisms of intercell communication can be responsible for multirhythmicity in globally
coupled genetic units? Here, we show that an autoinducer intercell communication system that provides
coupling between synthetic genetic oscillators will inherently lead to multirhythmicity and the appearance of
several coexisting dynamical regimes, if the time evolution of the genetic network can be split in two well-
separated time scales. We investigate in detail a variety of dynamical regimes in a genetic population and show
the possibility for multiple element distributions between clusters, as well as the possibility of generating
complex oscillations with different return times in one limit cycle.
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I. INTRODUCTION

The ability to design and construct synthetic genetic regu-
latory networks provides a natural framework to study the
dynamics of gene regulation. This also opens numerous ap-
plications in biotechnology, where a new approach is envi-
sioned, e.g., in drug production or in the design of the new-
era computing devices, based directly on synthetic genetic
circuits [1]. Several rather simple genetic networks have
been recently proposed and experimentally constructed, e.g.,
toggle switches [2], the repressilator [3], relaxator models
[4,5], different logic circuits [6], etc.

Recently, the possibility to use the quorum sensing
mechanism in order to investigate global synchronization in
synthetic genetic networks has been reported for determinis-
tic [5,7-9], as well as for noise-driven [10] genetic oscilla-
tors. It is important to point out that these genetic circuits
function in arrays and mostly they operate coupled through
small molecules of autoinducer (Al) diffusing between cells.
This intercellular signaling mechanism in certain models
[5.8] is governed by a slow time scale in the system and the
coupling is organized through the slow recovery variable in
the genetic network. As known from oscillation theory, such
coupling has a phase-repulsive property and can be referred
to as inhibitory. On the other hand, local coupling of limit
cycles via inhibitory variables has been reported to yield a
coexistence of different stable attractors [11-13], thus mak-
ing the multirhythmicity in such systems rather typical. Note
that increased relaxatory dynamics, i.e., enhanced separation
of time scales, of the individual elements leads to increased
parametric areas of individual stability for different periodic
attractors, as well as increased hysteresis areas [14,15].

Multirhythmicity appearing due to the complex structure
of isolated oscillators has been investigated by Decrloy and
Goldbeter [16], or more recently in [17]. In contrast to this,
multirthythmicity evoked by the interactions of general iden-
tical biological [ 18-20] or technical [21] oscillators is mainly
a subject of recent investigations. Multirhythmicity has been
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also reported in earlier simulations of coupled circadian os-
cillators [22-24]. However, the mechanisms that lead to mul-
tirhythmicity in globally coupled genetic oscillators differ
substantially from those reported for circadian oscillators. A
main manifestation of multistability for systems of globally
coupled oscillators is clustering, defined as a dynamical state
of the system characterized with the coexistence of several
subgroups, where the oscillators exhibit identical behavior.
Clustering has been investigated for different systems, in-
cluding identical one-dimensional maps, e.g., logistic or
circle maps [25]. Regarding oscillators, the clustering has
been proved theoretically for identical phase oscillators
[26,27], observed experimentally for salt-water oscillators
[28] or electrochemical oscillators [29,30], etc. However,
multirhythmicity and coexistence of several attractors, well
known for abstract mathematical models, have not been re-
ported for concrete genetic networks. These effects can be
very important for the construction of genetic networks and
understanding of evolutionary mechanisms behind the cell
differentiation and genetic clock functioning. The ability of a
genetic unit to produce different dynamical regimes which
coexist also means its improved adaptability: if one of the
regimes becomes unprofitable for cell functioning, the ge-
netic unit can easily switch to some of the other coexisting
regimes available. Moreover, coexistence of different re-
gimes opens the possibility for construction of a “genetic-
based” information storage devices.

In this paper we show that multirhythmicity is a typical
property of genetic networks with multiple time scale dy-
namics and autoinducer intercell communication system. The
subject of our study is, therefore, a model constructed from
genetic networks previously investigated in separate
experiments—the toggle switch coupled via the quorum
sensing mechanism [8]. First, we present by direct calcula-
tions the existence of different dynamical regimes and clus-
tering with different element distribution between clusters.
Next, we give a detailed bifurcation analysis for a system of
two coupled genetic oscillators, and show the richness of
dynamical regimes and the parameter ranges in which these
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regimes can be realized. Finally, we discuss the importance
of these dynamical regimes in arrays of Al coupled genetic
networks for new applications regarding the design of ge-
netic clocks, synchronization properties with the cell cycle
[4], chronotherapy, etc.

II. MODEL EQUATIONS

We consider a model of hysteresis-based relaxation ge-
netic oscillators coupled via the quorum sensing mechanism,
recently proposed in [8]. The oscillator is constructed by
combining two engineered gene networks, the toggle switch
[2] and an intercell communication system, which have been
previously implemented experimentally in Escherichia coli
[31] and Vibrio fischeri [32]. The synthesis of the two repres-
sor proteins, which constitute the toggle switch, are regulated
in such a way that the expression of the two genes is mutu-
ally exclusive, organizing bistability. The second network is
based on the dynamics of an autoinducer, which on the one
hand drives the toggle switch through the hysteresis loop,
and on the other hand provides an intercell communication
by diffusion through the cell membrane.

The time evolution of the elements in the system is gov-
erned by the dimensionless equations (see details in [8]):

d
Uy f(v,) -+ ash(w,), (1)
% = azg(ui) -V (2)
dw;
o glasg(u) —w;]+2d(w, —w)), (3)
N

dw, B d_
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where N is the total number of cells (oscillators), u; and v;
represent the proteins from which the toggle switch is con-
structed in the ith cell, and w; represents the intracellular and
w, the extracellular Al concentration (Fig. 1). The mutual

FIG. 1. Schematic diagram of the network of genetic relaxation
oscillators. u, v, and w denote the genes, and P, P,, and P; the
corresponding promoters. Al refers to the autoinducer molecules.
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influence of the genes is defined with the functions
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where S, 7, and 7y are the parameters of the corresponding
activatory or inhibitory Hill functions.

In Egs. (1) and (2), the dimensionless parameters «; and
a, regulate the repressor operation in the toggle switch, as,
the activation due to the Al, and «, the repressing of the Al.
The coupling coefficients in the system are given by d and d,
(intracellular and extracellular) and depend mainly on the
diffusion properties of the membrane, as well as on the ratio
between the volume of the cells and the extracellular volume
[8]. If the parameter ¢ is small (e < 1) [8], as in our case, the
evolution of the system splits into two well-separated time
scales, a fast dynamics of u;, v; and a slow dynamics of w;.
Due to this presence of multiple time scales, the system can
produce relaxation oscillations.

III. MULTISTABILITY AND CLUSTERIZATION

Contemporary models of synthetic genetic oscillators
coupled with Al exchange exhibit mainly in-phase oscilla-
tory behavior [5,7,8]. Additionally, oscillation death (OD) in
synthetic genetic oscillators has been discussed [8]. How-
ever, the appearance of other regimes or clustering, as well
as the possibility for different distributions between clusters
has not been observed in synthetic genetic networks. We re-
port here the presence of multirhythmicity and clustering by
means of numerical simulations for a system of globally
coupled relaxation synthetic genetic oscillators. It is impor-
tant to note that all of the solutions presented in this paper
can be obtained for any network size. Two main phenomena
are discussed here. First, we show the existence of different
possible modes of organized collective behavior in the sys-
tem of globally coupled relaxation genetic oscillators. We
distinguish between two different types of clusters: (i) steady
state clusters (Fig. 2) and (ii) oscillatory clusters (Fig. 3).
Second, for each separate cluster formation, we demonstrate
how the dependence on initial conditions can lead to differ-
ent distributions of the oscillators between the clusters. In
general, a system consisting of N oscillators can exhibit N
—1 different distributions of the oscillators among the clus-
ters.

(i) Oscillation death, called also inhomogeneous steady
states, was initially discovered by Prigogine and Lefever [33]
in a system of two coupled Brusselators. Furthermore, Bar-
Eli [34] showed that OD persists in a large region of param-
eters in several models of diffusively coupled chemical os-
cillators.  Extensive  numerical and  experimental
investigations of OD for globally coupled systems have been
presented for electrochemical oscillators [35]. However,
clustering is not observed because a two-oscillator system
was used. Recently, these phenomena have been reported for
different biological system, such as two coupled S cells of
the pancreatic islet of Langerhans [18].

The oscillators engaged in the OD regime in our model
are distributed among two clusters and remain in a steady
state, i.e., producing constant protein levels in the cell [Figs.
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FIG. 2. Examples of different distributions in the steady state
clusters for the system (1)—(4) with N=8 oscillators. Parameters:
e=0.01, a1=3, a»=5, az=1, ay=4, B=7n=7y=2, d=0.3, and d,
=1. Distribution (a) 1:7, where seven oscillators occupy the higher
level; (b) 2:6; (c) 3:5; and (d) 4:4. Note the different protein levels
for different oscillator distributions.

2(a)-2(d)]. We have found the existence of (N—1) possible
different distributions of the oscillators between these two
clusters, each characterized by a shift in the protein produc-
tion level. Examples of different distributions are plotted in
Figs. 2(a)-2(d).

(ii) When the cells are identical, the coupled system is
symmetric and identical behavior of the cells in the system is
always a solution, though not necessarily a stable one [Fig.
3(a)]. However, the inhibitory coupling and the presence of
multiple time scales, as previously discussed, create the pos-
sibility for multistability and multirhythmicity, resulting in
the generation of various dynamical regimes. It is important
to note that the dependence of the regime formation on the
value of the coupling coefficient d gives rise to the formation
of oscillatory clusters. When referring to oscillatory clusters,
we speak about a cluster state characterized by the coexist-
ence of subgroups, each of them containing in-phase-
synchronized oscillations. For d<<0.01, the system can ex-
hibit antiphase oscillations, with oscillators distributed
between the two oscillatory clusters [Figs. 3(b) and 3(c)]. An
important feature to be mentioned is the characterization of
different distributions with different periods of the limit
cycle, providing more complex dynamics with different
rhythms [compare Fig. 3(b) (5:3 distribution) with period T
=364.15 and Fig. 3(c) (4:4 distribution) with period T
=256.27].

Another mode of possible collective behavior of this sys-
tem is asymmetric oscillations (for d<<0.003), when some of
the oscillators in the system perform large excursions, while
the rest oscillate in the vicinity of a stable steady state with
small amplitude. This results in the presence of two oscilla-
tory clusters [Figs. 3(d) and 3(e)]. Again, the number of pos-
sible different distributions for a system of N oscillators is
(N-1), and each has a different period of oscillations [com-
pare Fig. 3(d) (1:7) with period T=216.95 and Fig. 3(e) (4:4)
with T=141.01].

The oscillators in the system can be also ordered in mul-
tiple cluster regimes; we present only two examples here,
three [Fig. 3(f)] and five [Fig. 3(g)] oscillatory clusters.
Again, different distributions of the oscillators between the
clusters are possible in this case. To illustrate this, we present
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FIG. 3. Different oscillatory clusters for system of N=8 oscilla-
tors. (a) In-phase oscillations, a;=3, d=0.005; (b),(c) antiphase os-
cillations with different distributions of the oscillators between clus-
ters, a;=3.3, d=0.001; (d),(e) asymmetric solution with different
distribution of the oscillators: a;=2.868, d=0.001; (f) three oscil-
latory clusters a;=3.3, d=0.001 05; and (g) five oscillatory clusters
a=3.3, d=0.001. For other parameters see Fig. 2.

here a 3:3:2 distribution when three oscillatory clusters are
formed [Fig. 3(f)], and a 1:2:2:2:1 distribution when five
oscillatory clusters are created [Fig. 3(g)]. In these multiple
oscillatory cluster regimes, the cycles may contain several
subcycles, an effect previously not observed in genetic net-
works and stable in certain parametric spaces. The complex-
ity of these oscillatory regimes manifests itself through the
generation of different return times in one limit cycle, and
could have further impact on biotechnological applications,
since it enables the possibility of synchronization properties
with an external cycle (e.g., the cell cycle) in a broader fre-
quency range.

IV. IDENTIFICATION OF DYNAMICAL REGIMES
THROUGH A BIFURCATION ANALYSIS

Since the dynamics of the toggle switch and hence of the
whole system is determined mainly by the parameters «; and
a,, we choose «; as a bifurcation parameter and study more
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FIG. 4. (Color online) Bifurcation diagram obtained by variation
of aj, to illustrate the OD. The coupling strength is d=0.01. Other
parameters are the same as in Fig. 2. Thin solid lines denote stable
steady state; thick solid lines a stable OD regime; dash-dotted lines
unstable steady state; dotted lines unstable limit cycle; and dashed
lines stable limit cycle.

systematic qualitative changes in the system. The change of
the other parameter a, will result in the appearance of iden-
tical regimes due to the symmetry of the toggle switch. For
each regime we analyze also the influence of the parameters
e and d. The analysis is obtained using the XPPAUT package
[36] for a system of two coupled genetic oscillators (N=2) to
show that already two oscillators provide a large variety of
possible regimes.

A. Steady state formation

The OD (Fig. 2) is a result of the symmetry breaking of
the steady state in the system through a pitchfork bifurcation
(labeled PB; in Fig. 4). Thus, the unstable homogeneous
steady state splits into two additional branches which gain
stability through Hopf bifurcations, denoted as HB;; (HB,,)
in Fig. 4. This stabilization occurs for d>d.,;, which is ap-
proximately 0.006 for the set of parameters used here. The
inhomogeneous steady state is manifested through two
branches of the stable steady state solution, which corre-
spond to two levels of protein concentrations in Figs.
2(a)-2(d). The solution coexists in the «; parameter space
with different oscillatory solutions, e.g., with the synchro-
nous regime (see Fig. 4). For different values of the param-
eters there is also coexistence of OD with antiphase oscilla-
tions (see Fig. 9 below).

The structure of the stable clusters is different for small
and large values of the coupling strength d. When d is sub-
sequently increased, five different states coexist in the given
parameter range (o€ [2.76,2.88] and «, € [3.34,3.62]); three
of them are stable, and two are unstable (Fig. 5). The pitch-
fork bifurcation is now shifted, marking the end of the ho-
mogenous steady state, which becomes unstable and splits
into two separate branches, as discussed previously. Figure 5
also shows the coexistence with the in-phase oscillatory re-
gime, marked with dashed lines.

It is important to note that the Hopf bifurcations HB;; and
HB,, give rise also to additional branches of periodic solu-
tions which are unstable and therefore omitted for clarity.

PHYSICAL REVIEW E 75, 031916 (2007)

B. Oscillatory regimes

1. In-phase oscillatory regime

The Hopf bifurcations labeled HB; and HB, in Fig. 6(a)
give rise to a branch of periodic orbits, corresponding to a
synchronous in-phase solution [see Fig. 3(a)], i.e., there exist
synchronous oscillations of the protein concentration over
both cells. Figures 6(b) and 6(c) illustrate in more detail the
bifurcation structure of the full system when «; is subse-
quently being varied and «, is kept fixed. Two subcritical
Hopf bifurcations mark the entering and exiting from the
in-phase oscillatory regime [HB; for a;=2.864 and HB, at
a,=3.338; Fig. 6(a)-6(c)]. The stable in-phase oscillatory
region is determined with two saddle-node bifurcations LP,
and LP,. It is important to note that the in-phase oscillations
present in the system are stable for any values of d. The
periodic branch rising from HB, (HB,) coexists in the same
parameter space with the OD clusters, and, as shown further,
with the antiphase and the asymmetric oscillatory regimes,
thus establishing multistability in the system.

2. Antiphase oscillatory regime

For a small coupling coefficient (¢ <<0.01) which depends
on the diffusion properties of the cell membrane, stable an-

4
(a)

FIG. 5. (Color online) Coexistence of five different states for
increased coupling strength d=0.3 and e=(a) 0.05, (b) 0.01. For
other parameters see Fig. 2. Coexistence of the OD and the in-phase
oscillatory regime is also shown. Thin solid lines denote stable
steady state, thick solid lines a stable OD regime, dash-dotted lines
unstable steady state, dashed lines stable limit cycle (in-phase re-
gime), and dotted lines unstable limit cycle. Note: Due to the large
stiffness of our multidimensional model and the proximity to the
bifurcation point, the correct continuation could not be performed
with the XPPAUT package. Therefore the branch on Fig. 5(b) is not
closed.
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FIG. 6. Formation of oscillatory solution. (a) Bifurcation dia-
gram of the system obtained by variation in «; for a fixed value of
a, (a;=5) and d=0.001. For other parameters see Fig. 2. (b) De-
tailed view of HB; and HB,. (c) Detailed view of HB; and HB,.
Thin solid lines denote stable steady state, thick solid lines stable
limit cycle, dash-dotted lines unstable steady state, and dotted line
unstable limit cycle.

tiphase oscillations [see Figs. 3(b) and 3(c)] can be observed.
The periodic branch giving rise to the antiphase solution is
marked again with two Hopf bifurcations: HB, at o«
=2.869 and HB; at «;=3.336 (Fig. 7).

Stable antiphase oscillations are observed from «;
=3.224 until a;=3.290. This solution is stabilized through a
saddle-node bifurcation and loses its stability via pitchfork
bifurcation (LP;, PB, in Fig. 7). For decreased values of &,

4
LP]’P]?z

3 e HB’*-.__,‘_. ]

PB,; 3/
=j) C
1 HBz
i

033 32 34

FIG. 7. Bifurcation diagram of the antiphase solution for d
=0.001 and other parameters as in Fig. 2. The pitchfork bifurcation
marked as PB; will be used further in the paper as starting point for
the asymmetric solution. For line notations refer to Fig. 6.
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FIG. 8. (Color online) Decreased stability region of the an-
tiphase solution for increased coupling strength d=0.003. Other pa-
rameters are the same as in Fig. 2. For line notations refer to Fig. 6.

on the other hand, the region of a stable antiphase regime is
significantly increased (results not shown). The behavior of
the system, however, is changed when d increases. The com-
plex situation that arises in this case is characterized by a
qualitative difference in the particular bifurcation branch
(Fig. 8), which results in a subsequent decrease of the stable
oscillatory antiphase solution. For some parameter values,
the coexistence of antiphase oscillations with stable steady
state clusters can be observed (Fig. 9). This important feature
of the system of globally coupled genetic relaxation oscilla-
tors has not been observed previously for networks con-
structed from synthetic genetic oscillators or for the system
of globally coupled electrochemical oscillators where OD is
discussed.

3. Asymmetric oscillatory regime

Another mode of collective behavior in the system of
coupled genetic oscillators is characterized by the presence
of large and small amplitude oscillations in one attractor, the
solution, to which we refer as asymmetric [see Figs. 3(d) and
3(e)]. In this regime, one of the oscillators performs large
excursions, while the other one oscillates near the steady
state with a small amplitude. The structure of the bifurcation
branch which contains this solution is very complex and
therefore we demonstrate only the main steps that result in
the appearance of a stable asymmetric limit cycle. In particu-
lar, for a;=2.882 a pitchfork bifurcation, labeled as PB; in

7 LP ..---,.,....r..-...:
3 e ].PBZ o
,/"
527 HB‘] HBSZ |
HB, e
1’ HB HB\I Hsz
LP, PB,
) d 2
1

FIG. 9. (Color online) Coexistence of antiphase oscillations (be-
tween LP; and PB,) and stable steady state clusters (between HBy,
and HB,,) for d=0.006 and other parameters as in Fig. 2.
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Fig. 7 [Figs. 10(a) and 10(b)], is found on the bifurcation
branch which gives rise to the antiphase oscillations. From
this broken symmetry bifurcation point, a secondary unstable
bifurcation branch is started [Fig. 10(a)]. In the beginning,
this solution has a small degree of asymmetry. The one-
parameter continuation for the asymmetric solution moves
the bifurcation parameter in the direction of HB; (HB,), ap-
proaching the maximum value of u to the unstable steady
state. The bifurcation parameter is then shifted to the area of
subcritical HB, and the asymmetric regime gains stability in
the LP bifurcation which changes the direction of the one-
parameter continuation [the stability region is depicted with
thick lines in Fig. 10(b) (zoomed region)]. The increase of
the bifurcation parameter «; further results in a torus bifur-
cation at a;=2.877 [labeled as TR in Fig. 10(b)], leading to
the instability of the regime of asymmetric oscillations. This
torus bifurcation ensures the presence of two different in-
commensurate frequencies. For isolated oscillators (d=0)
and for o > ayp » the first frequency is that of a large cycle,
and the second one is determined by the eigenvalues of the
focus which is unstable. The interaction of these frequencies
results in a “beating” behavior, easily seen in Fig. 11(a)
where time series of the variables w;,w, are plotted. In Fig.
11(b) we show the phase plane (w;,u;) where we directly
demonstrate how the unfolding of the trajectory from the
unstable focus is held from large amplitude oscillations in-
side the large cycle. The phase point of the large cycle
should move faster than that of the small cycle and the suc-
cessful holding breaks if the larger period decreases when «;
is increased. This situation is shown in XPPAUT as the torus
bifurcation in Fig. 10(b). The distance between the two
cycles is not large, which results in the large sensitivity of
this regime to external perturbations. Due to the symmetry of
the system, this asymmetric solution can be also observed
near HB,.

V. SUMMARY AND OUTLOOK

The presence of multistability and multirhythmicity in
synthetic genetic circuits is an important phenomenon from
an engineering perspective, since both offer an intriguing
potential for numerous biotechnological applications. We
have shown in this paper that Al-mediated inhibitory cou-
pling in a system of synthetic genetic relaxation oscillators,
functioning through multiple time scales, is a source of mul-
tistability and multirhythmicity. Our main result is signifi-
cantly different from that obtained in studies of coupled cir-
cadian oscillators [22-24]; namely, the global and robust in-
phase regime reported to be natural in a population of
circadian oscillators is a result of the nonrelaxatory oscilla-
tions with phase attractive coupling, whereas the presence of
multistability in our model is a result of phase repulsive in-
hibitory coupling and relaxatory dynamics. The presence of
global coupling between the oscillators in the system results
also in clustering. We have identified many possible modes
of collective behavior in this system, distinguishing two
types of cluster formation: steady state and oscillatory clus-
ters. Each separate cluster formation is further characterized
by a different protein production level, different period of
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FIG. 10. (a) Bifurcation diagram obtained by variation in a;.
d=0.001 and other parameters as in Fig. 2. (b) Detailed view of the
region where the stable asymmetric solution exists. Between LP and
TR, one oscillator has a large amplitude and the other oscillates
with small amplitude. For line notations refer to Fig. 6. Note: The
branch on Fig. 10(a) is not closed for the same reasons named in the
Fig. 5 caption.

oscillations, or existence of multiple rhythms. In the current
set of parameters, the minimal degree of cooperativity has
been used (all Hill coefficients equal 2). We suggest that an
increase of stability of nontrivial limit cycles over wider pa-
rameter ranges may be associated with the use of other ele-
ments with large Hill coefficients.

The dynamical richness observed in this particular model
can be considered as a significant advantage for a multitude
of applications (biosensors, programming genetic units, etc.).
In this paper we have presented a minimal manifestation of

(a)
14

2 1.2

1

0 200 400 600 800 1000

time
(b)
14 (@)
2 1.2

FIG. 11. (a) Time series for two oscillators in the asymmetric
regime. d=0.001 and other parameters correspond to Fig. 2. The
thick solid line represents w, thin solid line w,, and dashed line w,.
(b) Phase portrait of the two coupled oscillators in the asymmetric
regime. Small cycle corresponds to one and large cycle to the sec-
ond oscillator.
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1.5

FIG. 12. Large amplitude changes due to the variation of the
parameter values for system of N=8 oscillators.

multistability because identical elements have been consid-
ered. It is well known that the set of possible regimes is
enlarged if more realistic heterogeneity is taken into account.
Moreover, for relaxation oscillators chosen not far from a
Hopf bifurcation, the in-phase regime may become unstable
due to the heterogeneity of the elements.

It has been reported that multistability is a main mecha-
nism for memory storage and temporal pattern recognition in
artificial and natural neural networks [37]. Moreover, the ef-
fect of multistability is also used to create an electrically
addressable passive device of organic molecules [38] for reg-
istration, storage, and processing of information. Therefore,
it is logical to assume that the ability of the genetic circuits
to display multistability opens the possibility for construction
of new-era computational devices, based on genetic and
DNA computing. In addition, it is very important to note that
the presence of different periods for different oscillator dis-
tributions in every regime reported here opens the possibility
for a resonant behavior of the system on multitude frequen-
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cies. This result can be important, e.g., for the construction
of genetic networks driven by a periodic signal [4] coupled
with cell cycle regulation. It also means that different syn-
chronization regions can be obtained for different external
frequencies, an effect which can have impact in cancer chro-
notherapy or cell cycle regulation. We emphasize the gener-
ality of these results, although derived for this particular
model of genetic network, since no special properties of the
given system were used to obtain the appearance of multi-
stability, multirhythmicity, and clustering.

It is also important to mention that the existence of the
asymmetric regime enables the system of globally coupled
genetic relaxation oscillators to exhibit very sensitive ampli-
tude changes due to the variation in the «; parameter values
(Fig. 12). Phenomenologically, this regime is very similar to
localized patterns which have in the background a Canard
behavior near the supercritical Hopf bifurcation [39]. We as-
sume that asymmetrical regimes near subcritical bifurcations
are more robust than asymmetrical regimes near supercritical
Hopf bifurcations, under the same time scale separation. The
asymmetrical regime presented here opens the possibility for
the construction of very compact and precise biosensors with
increased sensitivity.
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